具有高数据异质性的泛化和可解释性MRI重建-黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女
  • 黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

    具有高数据异质性的泛化和可解释性MRI重建

    2024.11.04

    投稿:龚惠英部门:理学院浏览次数:

    活动信息

    报告题目 (Title):Generalizable and interpretable MRI reconstruction with high data heterogeneity(具有高数据异质性的泛化和可解释性MRI重建)

    报告人 (Speaker):陈韵梅(美国佛罗里达大学终身教授)

    报告时间 (Time):2024年11月3日(周日) 10:00-12:00

    报告地点 (Place):校本部 F楼四楼数学系讨论室

    邀请人(Inviter):彭亚新 教授

    主办部门:理学院数学系

    报告摘要:Deep learning methods have demonstrated promising performance in a variety of image reconstruction problems. However, task specific and extremely data demanding are still a major challenging in practical applications. In this work we introduce a generalizable MRI reconstruction method with diverse dataset to tackle those problems. Our approach proposes a variational model, in which the learnable regularization function is parameterized by two sets of parameters: a task-invariant set for common feature encoding and a task-specific part to account for the variations in the heterogeneous data. Then, we generate a neural network, whose architecture follows exactly a convergent learned optimization algorithm for solving the nonconvex and nonsmooth variational model. The network is trained by a bilevel optimization algorithm to prevent overfitting and improve generalizability. A series of experimental results on heterogeneous MRI data sets indicate that the proposed method generalizes well to the reconstruction problems whose undersampling patterns and trajectories are not present during training.

    黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女